Real-Time Tracking of Non-Rigid Objects Using Mean Shift
نویسندگان
چکیده
A new method for r eal-time tracking of non-rigid objects seen from a moving camera is proposed. The central computational module is based on the mean shift iterations and nds the most probable tar get p osition in the current frame. The dissimilarity between the target model (its c olor distribution) and the target candidates is expr essed by a metric derive d from the Bhattacharyya coe cient. The theoretical analysis of the approach shows that it relates to the Bayesian framework while providing a practical, fast and e cient solution. The capability of the tracker to handle in real-time partial occlusions, signi cant clutter, and target scale variations, is demonstrated for several image sequences.
منابع مشابه
Using a Novel Concept of Potential Pixel Energy for Object Tracking
Abstract In this paper, we propose a new method for kernel based object tracking which tracks the complete non rigid object. Definition the union image blob and mapping it to a new representation which we named as potential pixels matrix are the main part of tracking algorithm. The union image blob is constructed by expanding the previous object region based on the histogram feature. The pote...
متن کاملReal-time Tracking of Non-rigid Objects Using Modified Kernel-based Mean Shift and Optimal Predictoin
An efficient scheme for real-time color-based tracking of non-rigid objects is proposed. The central computational module is based on mean shift iterations. It computes the most probable target position in the current frame, while the prediction of the next target location is computed using a Kalman filter. The dissimilarity between the target model and the target candidates is expressed by a m...
متن کاملA Color-based Particle Filter
Robust real-time tracking of non-rigid objects is a challenging task. Particle filtering has been proven very successful for non-linear and non-Gaussian estimation problems. However, for the tracking of non-rigid objects, the selection of reliable image features is also essential. This paper presents the integration of color distributions into particle filtering, which has typically used edge-b...
متن کاملApplying mean shift and motion detection approaches to hand tracking in sign language
Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...
متن کاملAn Objects Detecting and Tracking method based on MSPF and SVM
Considering that the robust real-time tracking of non-rigid objects is difficult to realize, We present an objects detecting and tracking method based on mean-shift particle filter (MSPF) and support vector machine (SVM). The proposed algorithm uses the mean-shift vector of the tracking object to update the state transition matrix of particle filter algorithm, and we define the criterion of the...
متن کامل